HOMOGENEOUS EXTENSIONS OF POSITIVE LINEAR OPERATORS

ву DOROTHY MAHARAM

1. Introduction. A positive linear operator is (roughly speaking) a countably additive, order preserving, σ -finite linear mapping ϕ from one function space, F, to another, F'.(1) (For precise definitions, see §2 below. We assume in particular that F and F' satisfy the countable chain condition.) It has been shown in [4] that a normal form representation can be given for ϕ : if the function space F' consists of the "measurable" functions (modulo "null" functions) on a space X, then F is isomorphic to a subspace of the space F^* of "measurable" functions on $X \times Y$, where Y is an ordinary numerical measure space, and ϕ can be extended to a positive linear operator ϕ^* from F^* to F', in such a way that (to within the isomorphism mentioned) $\phi^*f = g$, where $g(x) = \int_Y f(x, y) dy$.

We are concerned here with the case in which F' = F. It is now of importance (for instance in ergodic theory) to consider the iterates of ϕ ; and the normal form representation just mentioned has now the drawback that the isomorphism imbedding F in F^* interferes with the description of these iterates. The present paper takes a first step towards obtaining a more satisfactory representation of ϕ and its iterates.

Given a positive linear operator ϕ from F to F, we shall show (Theorem 1, 4.1) that the function space F can be imbedded in a larger space F^* , and the operator ϕ extended to a positive linear operator ϕ^* from F^* to F^* , in such a way that the extended operator has the following property, which we call "full homogeneity": For each characteristic function $\chi \subset F^*$, and each function $g \subset F^*$ such that $0 \le g \le \phi^* \chi$, there exists a characteristic function χ' in F^* such that $\chi' \le \chi$ and $\phi^* \chi' = g.(^2)$ It follows that the iterates of the extended operator ϕ^* will also be fully homogeneous, and therefore σ -finite. (Even in simple cases, the iterates of ϕ itself may fail to be σ -finite(3).) A routine application of the results of [4] would then lead easily to a simultaneous representation theorem for ϕ and its iterates; however, a sharper theorem can be

Received by the editors October 8, 1959.

⁽¹⁾ Or from one conditionally complete vector σ -lattice, satisfying the countable chain condition, to another; cf. [4, p. 156].

⁽²⁾ To improve the legibility of formulae, we often omit brackets, writing (as here) $\phi^*\chi$ for $\phi^*(\chi)$, and later Rx for R(x), etc.

⁽³⁾ For example, let F be the space of measurable functions f(x, y) modulo null functions on the plane (with ordinary measure), and let $\phi f = g$ where $g(x, y) = \int_{-\infty}^{\infty} f(x, t) dt$ (independent of g(x)). Then g(x) is an g(x)-integral on g(x) function g(x) is finite, then g(x) is not g(x)-finite.

deduced with more trouble, so we leave this application for a later paper. Meanwhile we show (Theorem 3, §7) that when F arises from a genuine numerical measure (that is, F is the space of measurable functions modulo null functions on a measure space) then the extended space F^* in Theorem 1 can also be taken to arise from a numerical measure. The deduction of Theorem 3 depends on a property of measure algebras (Theorem 2, §6) which may be of independent interest: Given a σ -subalgebra A of a measure algebra (E, μ) , and given a σ -finite measure ν on A which is equivalent to μ on A (that is, ν vanishes only for the zero element of A), there exists a σ -finite measure ν^* on E which extends ν on E and is equivalent to μ on E.

The technique employed for the proofs makes considerable use of representation spaces and of continuous functions on them; thus, after giving the notation and some preliminary results in §2, we collect some results on the representation spaces of an algebra and a complete subalgebra of it in §3. Theorem 1 and its proof occupy §§4 and 5, Theorem 2 is dealt with in §6, and Theorem 3 in §7. The background material and a few specific results are quoted without proof from [2-5]; apart from this the present paper is largely self-contained.

2. Notation and preliminaries.

2.1 Algebras and representation spaces. In general we use the same notations as in [2;4], an acquaintance with which is assumed. The term "algebra" always means "Boolean algebra"; if E is an algebra, the symbols o and e denote the zero and unit elements of E respectively, and -x denotes the complement of $x \in E$; and the symmetric difference of x, $y \in E$ (written x+2y in [2;4]) is here written as x+y.

The representation space of an algebra E is the space R of ultrafilters on E; to each $x \in E$ corresponds the set $Rx \subset R$ consisting of those ultrafilters which contain x (thus $Ro = \phi$, Re = R), and T is topologised by taking the sets Rx as a basis; R is compact Hausdorff, and each Rx is both open and closed. The correspondence $x \leftrightarrow Rx$ is a finite isomorphism between E and the algebra of all open-closed subsets of R. We write \mathfrak{B}^*R for the family of Borel subsets of R, $\mathfrak{B}R$ for the family of "restricted Borel sets" (the Borel field generated by the open-closed sets of R), and $\mathfrak{K}R$ for the family of first category subsets of R. We have:

(1) If $X \in \mathfrak{B}^*R$, X = G + H where G is open and $H \in \mathfrak{K}R$. (Here again + denotes symmetric difference.) As the method of proof of (1) ("Borel induction") will be used frequently in what follows, we sketch it: The family of all sets of the form G + H, where G is open and $H \in \mathfrak{K}R$, is closed under complementation and under countable unions; hence it is a Borel field containing all open sets, and so it contains \mathfrak{B}^*R .

Similarly, if E is a σ -algebra, we have

(2) If $X \in \mathfrak{B}R$, X = Rx + H where $x \in E$ and $H \in \mathfrak{K}R$. It follows that the σ -algebra E is isomorphic to $\mathfrak{B}R/\mathfrak{K}R$; if further E is a complete algebra (as it will be if it satisfies the countable chain condition) then this σ -isomorphism is necessarily complete. If E is complete, (2) applies to all sets in \mathfrak{G}^*R , so that E is (completely) isomorphic to $\mathfrak{G}^*R/\mathfrak{K}R$.

2.2 Subalgebras. Let A be a subalgebra of an arbitrary algebra E, and let S, R be their respective representation spaces. There is a natural mapping ξ of R onto S, obtained as follows: each point of R is an ultrafilter $\mathfrak U$ on E, and its trace $\mathfrak U \cap A$ on A is an ultrafilter on A; we take $\xi(\mathfrak U) = \mathfrak U \cap A$. It is easily verified that

$$\xi^{-1}(Sy) = Ry, (y \in A),$$

so that ξ is continuous. If further B is a subalgebra of A, with T as its representation space, and ξ' , ξ'' are the corresponding mappings from R to T, S to T, then clearly

$$\xi' = \xi'' \xi.$$

Let \mathfrak{B}_o be the Borel field (of subsets of R) generated by the sets Ry, $y \in B$; a "Borel induction" argument shows that

2.3 Complete subalgebras. A subalgebra A of an arbitrary algebra E will be called a complete subalgebra of E if, for every $H \subset A$, the supremum $\forall H = \bigvee \{h \mid h \in H\}$ of H in E exists and belongs to A; thus A (but not necessarily E) is then itself a complete algebra. An isomorphism θ of an algebra B onto a subalgebra A of E is "complete with respect to E" if A is a complete subalgebra of E; this implies that B is itself a complete algebra and that, for every $H \subset B$, $\theta(\forall H) = \bigvee (\theta H)$ (the supremum in A or E).

Now suppose A is a complete subalgebra of an arbitrary algebra E, and let S, R, be their respective representation spaces, and ξ the mapping of R onto S introduced in 2.2. For each $x \in E$, write $x^* = \Lambda \{y | y \in A, y \ge x\}$ (the infimum referring to E, but $x^* \in A$). It is now easily verified that

$$\xi Rx = Sx^*,$$

so that ξ is now *open* as well as continuous (and so closed, as R, S are compact Hausdorff). It follows that

$$\xi^{-1} \mathfrak{K} S \subset \mathfrak{K} R.$$

We deduce:

(3) If $H \in \mathfrak{B}^*S$ and $\xi^{-1}H \in \mathfrak{K}R$, then $H \in \mathfrak{K}S$.

For, by 2.1(2), H=G+Z where G is open and $Z \in \mathcal{K}S$. Hence $\xi^{-1}H = \xi^{-1}G + \xi^{-1}Z$, showing that the open set $\xi^{-1}G$ is (from (2)) of first category in the compact space R; hence $\xi^{-1}G = \emptyset$, giving H=Z as required.

These results, together with 2.2(3), give

$$\mathfrak{K}R \cap \mathfrak{G}_{\mathfrak{o}} = \xi^{-1}(\mathfrak{K}S \cap \mathfrak{G}S).$$

2.4 Function spaces. Let S be any set, $\mathfrak B$ any Borel field of subsets of S, and $\mathfrak R$ any σ -ideal of subsets of S. By a "function" f on S we mean an extended-real function (so that, for each $s \in S$, f(s) is real or ∞ or $-\infty$). We make the convention that $0 \cdot \infty = 0$, but $\infty - \infty$ is not defined. $\mathfrak F(\mathfrak B)$ denotes the collection of " $\mathfrak B$ -measurable" functions on S, that is, of functions f such that, for each real ρ , $\{s \mid s \in S, f(s) > \rho\} \in \mathfrak B$. The set of non-negative $\mathfrak B$ -measurable functions is denoted by $\mathfrak F^+(\mathfrak B)$; generally, if $\mathfrak B$ is any set of functions, $\mathfrak B^+$ denotes the set of non-negative functions in $\mathfrak B$. The support [f] (called "locus" in [4;5]) of a function f on S is the set $\{s \mid f(s) \neq 0\}$. A function f is "null" or $\mathfrak B$ -negligible if $[f] \in \mathfrak B$; the set of $\mathfrak B$ -negligible functions is denoted by $\mathfrak T(\mathfrak B)$. The equivalence class modulo $\mathfrak T(\mathfrak B)$ of a function f is written $f+\mathfrak T(\mathfrak B)$ or f (and not f), as in f, as in f. We write f is f to mean f(s) < g(s) for all f is f in f. The set f is f is written f is written f is f. The set f is f is written f is written f is f. The set f is f is written f is written f is written f is f is written f is written f is f.

If E is the σ -algebra $\mathfrak{B}/\mathfrak{N}$, E determines $\mathfrak{F}(S,\mathfrak{B},\mathfrak{N})$ to within "strict" isomorphism (a 1-1 correspondence preserving \leq and (pointwise) sums and products) (see [4, p. 159]), and we write the strict isomorphism class of $\mathfrak{F}(S,\mathfrak{B},\mathfrak{N})$ as F(E); we also use F(E) to stand for any one member of this class. $F^+(E)$ of course denotes the subset of F(E) corresponding to the nonnegative functions. We say that $\mathfrak{F}(S,\mathfrak{B},\mathfrak{N})$ is a realisation of F(E). For every σ -algebra E, the function space F(E) exists and has the representation space realisation $\mathfrak{F}(R,\mathfrak{B},\mathfrak{N})$ where R= representation space of E, $\mathfrak{B}=\mathfrak{B}R$ (or \mathfrak{B}^*R if E is complete), $\mathfrak{N}=\mathfrak{K}R$. If E is complete, each $f\in F(E)$ now has a unique continuous representative $f\in \mathfrak{F}(R,\mathfrak{B},\mathfrak{N})$, as follows from [2, p. 285].

The support $[\bar{f}]$ of $\bar{f} \in F(E)$ is the element $[f] + \mathfrak{N}$ of E. Dually, if $x \in E$, its characteristic function χ_x or χx is the element $\overline{\chi(X)}$ of F(E), where $\chi(X)$ is the characteristic function of any set $X \in \mathfrak{A}$ for which the equivalence class $X + \mathfrak{N} = x$. The value of $\chi(X)$ at $s \in S$ is denoted by $\chi(X, s)$.

2.5 Cylinder mappings. Let A be a σ -subalgebra of a σ -algebra E. There is then a natural strict isomorphism c of F(A) in F(E), which we call the "cylinder mapping" (by analogy with the case in which E is the product of A with another factor); it can be described as follows. Each $\bar{g} \in F(A)$ determines a "spectrum" (cf. [6; 4, p. 159]) on A; in terms of any realisation $\mathfrak{F}(S, \mathfrak{G}, \mathfrak{N})$ of F(A), the spectrum consists of the equivalence classes modulo \mathfrak{N} of the sets $\{s \mid g(s) < \rho\}$ where ρ is rational. Conversely, each spectrum on A determines a unique $\bar{g} \in F(A)$. The imbedding of A in E turns the spectrum of \bar{g} into the spectrum of a unique $\bar{f} \in F(E)$, and we take $c(\bar{g}) = \bar{f}$. In particular, if $\mathfrak{F}(S', \mathfrak{G}', \mathfrak{N}')$ is any realisation of F(E), the sets of \mathfrak{G}' which correspond to elements in A form a Borel field $\mathfrak{G}'' \subset \mathfrak{G}'$ such that $\mathfrak{F}(S', \mathfrak{G}'', \mathfrak{N}')$ is a realisation of F(A); the cylinder mapping of F(A) in F(E) is now that induced by the identity mapping on S'.

⁽⁴⁾ It is an "extended vector σ -lattice with a unit," in the sense that the classes of the finite functions form a vector σ -lattice with a unit, and conversely every vector σ -lattice with a unit arises in this way.

We shall later require the form taken by the cylinder mapping in terms of the representation space realisations. Let R, S be the representation spaces of the σ -algebras E, A where A is a complete subalgebra of E; let ξ be the corresponding mapping of R onto S (cf. 2.2), and let \mathfrak{C} , \mathfrak{D} be the families of continuous functions on R, S. As ξ is continuous, ξ induces a mapping ξ^* of \mathfrak{D} in \mathfrak{C} by the rule $(\xi^*g)p=g(\xi p)$, $p\in R$, $g\in \mathfrak{D}$. Each $\bar{g}\in F(A)$ is the equivalence class of a unique $g\in \mathfrak{D}$ (cf. end of 2.4), and we have

$$c\bar{g} = \overline{\xi^* g},$$

as follows from 2.2(1) and 2.3(2) applied to the spectrum of \bar{g} .

- 2.6 F'-integrals. Let E, E' be σ -algebras satisfying the countable chain condition, and write F = F(E), F' = F(E'). A mapping ϕ of a subset G of F in F' is called a positive linear operator from F to F', or an F'-integral on F (cf. [4, p. 161; 5, p. 232]) if $G \supset F^+$ and:
 - (1) If $\bar{f} \in F^+$, $\phi \bar{f} \ge 0$.
 - (2) If $\bar{f}_n \in F^+$ $(n=1, 2, \cdots)$, then $\phi(\sum \bar{f}_n) = \sum \phi \bar{f}_n$.
 - (3) There exist \bar{g}_1 , \bar{g}_2 , $\cdots \in F^+$ such that $\sum \bar{g}_n \gg 0$ and $\phi \bar{g}_n \ll \infty$.
 - (4) $G = \{\bar{f} \mid \phi(\bar{f}^+) \land \phi(\bar{f}^-) \ll \infty \}$, and if $\bar{f} \in G$ then $\phi \bar{f} = \phi(\bar{f}^+) \phi(\bar{f}^-)$.

As ϕ is determined by its values on F^+ , we shall usually regard ϕ as a mapping of F^+ in F'^+ satisfying (2) and (3); for every such mapping can be extended to a suitable G [4, pp. 161, 162]. The extended mapping ϕ is necessarily linear on G.

If further ϕ satisfies

- (i) $\phi \bar{f} > 0$, if $\bar{f} > 0$,
- (ii) $\phi 1 \gg 0$,

 ϕ is called *strict*. (In [4; 5], a *strict* F'-integral on F was called simply an F'-integral; the present F'-integral was called "relaxed.") Every F'-integral ϕ on F determines in a natural way a strict F_1' -integral ϕ_1 on F_1 , where $F_1 = F(E_1)$, $F_1' = F(E_1')$, and E_1 , E_1' are suitable principal ideals of E, E' (see [5, p. 238]); ϕ_1 is called the "strict form" of ϕ .

For any F'-integral ϕ on F, we write $\lambda x = \phi(\chi x)(x \in E)$; λ is the induced "F'-measure" on E; it is countably additive and σ -finite [5, p. 233 (a) and (b)] and determines ϕ uniquely.

An F'-integral ϕ on F is fully homogeneous if the corresponding F-measure λ is "full-valued" in the sense of [4, p. 166]; that is, given $x \in E$ and $\bar{g} \in F'^+$ such that $\bar{g} \leq \lambda x$, there exists $y \leq x$ such that $\lambda y = \bar{g}$. A fully homogeneous ϕ is itself full-valued [4, p. 174]; that is, given $\bar{f} \in F^+$ and $\bar{g} \in F'^+$ such that $\bar{g} \leq \phi \bar{f}$, there exists $\bar{h} \in F^+$ such that $\bar{h} \leq \bar{f}$ and $\phi \bar{h} = \bar{g}$.

Let E, E', E'' be σ -algebras, and F, F', F'' their function spaces (that is, F' = F(E'), etc.). Suppose ϕ is an F'-integral on F, and ψ an F''-integral on F'. In general, $\psi \phi$ need not be an F''-integral on F, as the σ -finiteness requirement (3) may fail. But:

(5) If ϕ and ψ are fully homogeneous, $\psi \phi$ is a fully homogeneous F''-

integral on F, provided that E satisfies the countable chain condition.

There is no difficulty in seeing that $\psi \phi$ satisfies conditions (1) and (2). Suppose $0 \le g \le \psi \phi \chi x$ where $x \in E$, $g \in F''$. Put $h = \lambda x = \phi \chi x$; then $0 \le g \le \psi h$, so (as ψ is full-valued) there exists $k \in F'^+$ such that $k \le h$ and $\psi k = g$. Hence there exists $y \le x$ in E such that $\lambda y = k$; and $\psi \phi \chi y = g$, proving that $\psi \phi$ is fully homogeneous. Put $\psi \phi = \theta$; condition (3) now follows in this way. Put $h_1 = 1 \land \theta 1$; there exists $x_1 \in E$ such that $\theta \chi x_1 = h_1$. If α is any countable ordinal, and disjoint elements $x_\beta \in E$ have been defined for all $\beta < \alpha$ so that $\theta \chi x \le 1$, we put $h_\alpha = 1 \land \theta \chi (- \nabla x_\beta | \beta < \alpha)$. If $h_\alpha \ne 0$, we take $x_\alpha \le - \nabla x_\beta$ so that $\theta \chi x_\alpha = h_\alpha \le 1$; if $h_\alpha = 0$, we put $x_\alpha = -\nabla x_\beta$ and terminate the process. Because of the countable chain condition, this process terminates for some countable α . Renumbering the elements $x_\beta (\beta < \alpha)$ into a simple sequence x_1, \dots, x_n, \dots , we put $\bar{g}_n = \chi x_n$ and have $\sum \bar{g}_n = 1 \gg 0$ and $\theta \bar{g}_n \le 1 \ll \infty$ as required.

For any F'-integral ϕ on F we have:

(6) If
$$f, g \in F^+$$
 and $[f] = [g]$, then $[\phi f] = [\phi g]$.
For $\infty \cdot f = \infty \cdot g$; hence $[\phi f] = [\infty \phi f] = [\phi \infty f] = [\phi g]$.

Now let E_1 , E_1' be σ -subalgebras of σ -algebras E_2 , E_2' satisfying the countable chain condition; write F_i , F_i' for $F(E_i)$, $F(E_i')$ respectively (i=1, 2), and let c, c' be the respective cylinder mappings of F_1 in F_2 , F_1' in F_2' . If ϕ_i (i=1, 2) is an F_i' -integral on F_i we say that ϕ_2 is a cylinder extension of ϕ_1 if, for each $\bar{f} \in F_1^+$, $c'(\phi_1\bar{f}) = \phi_2(c\bar{f})$. As remarked in 2.5, we can choose realisations of F_i and F_i' for which c' and c are induced by identity mappings, and then ϕ_2 is a cylinder extension of ϕ_1 if and only if ϕ_1 is (in an obvious sense) the restriction of ϕ_2 to F_1 .

The following result is basic for the construction in the present paper. It is proved (in a slightly different formulation) in [4, Theorem 6] for the case in which ϕ is strict; the general result follows easily on considering the "strict form" of ϕ . (For details see the beginning of §7.)

(7) If ϕ is an F'-integral on F, where F = F(E) and F' = F(E'), there exists an algebra E^* , of which E is a complete subalgebra, and an F'-integral ϕ^* on F(E), such that ϕ^* is a fully homogeneous cylinder extension of ϕ .

Except where the contrary is stated, all algebras in what follows are assumed to be σ -algebras satisfying the countable chain condition. Further, the term "subalgebra" is understood to mean a σ -subalgebra, and hence a complete subalgebra.

3. Functions on representation spaces.

3.1 Let A be a (complete) subalgebra of an arbitrary algebra E; A is of course assumed to be a σ -algebra satisfying the countable chain condition, but E is not. We derive for later use some properties of the representation spaces R, S of E, A, and of various families of functions on them. We write $\mathfrak{N}'_0 = \mathfrak{G}_0 \cap \mathfrak{K}R$, where \mathfrak{G}_0 is the Borel field generated by the sets Ry, $y \in A$, and \mathfrak{N}_0 for the family of all subsets N of R which are subsets of sets in \mathfrak{N}'_0 . From 2.2 and 2.3(4), $\mathfrak{F}(R, \mathfrak{G}_0, \mathfrak{N}_0)$ and $\mathfrak{F}(R, \mathfrak{G}_0, \mathfrak{K}R)$ are realisations of F(A); if E

is a σ -algebra, the corresponding cylinder mappings of F(A) in F(E) are induced by the identity mapping. As in 2.2 we write ξ for the natural mapping of R onto S, and C, D for the families of continuous functions on R, S.

3.2 LEMMA. If $H \in \mathcal{K}S$, there exist $x_{mn} \in A$ $(m, n=1, 2, \cdots)$ such that $x_{m1} \ge x_{m2} \ge \cdots$, $\bigwedge_n x_{mn} = 0$ for each m, and $H \subset \bigcup_m \bigcap_n Sx_{mn}$.

For let F be closed and nowhere dense in S; the open set S-F can be written as USy_{λ} for suitable $y_{\lambda} \subseteq A$, and (because F is nowhere dense) $Vy_{\lambda} = e$. There is therefore a sequence of values of λ , which we denote by $1, 2, \dots, i, \dots$, such that $Vy_i = e$. Put $x_n = -(y_1 \lor y_2 \lor \dots \lor y_n)$; then $x_1 \ge x_2 \ge \dots, \lambda x_n = o$, and $Sx_n = S - (Sy_1 \cup \dots \cup Sy_n) \supset F$. Now we have $H \subset UF_m$ $(m=1, 2, \dots)$ where F_m is closed and nowhere dense; applying the foregoing to F_m instead of F, we obtain the elements x_{mn} required.

COROLLARY. If $H \in \mathcal{KS}$, there exists $H^* \in \mathcal{KS} \cap \mathcal{BS}$ such that $H \subset H^*$.

- 3.3 DEFINITION. A function f on R is 0-continuous if, for each real (or, equivalently, rational) ρ , $\{p \mid p \in R, f(p) > \rho\}$ is a union of sets of the form Ry where $y \in A$. (This implies that f is continuous.) The set of 0-continuous functions on R is denoted by \mathfrak{C}_0 . We have
 - (1) $f \in \mathfrak{F}(\mathfrak{G}_0)$ if and only if there exists $h \in \mathfrak{F}(\mathfrak{G}(S))$ such that $f = h\xi$.

The nontrivial implication here can be seen by considering the spectrum of f, or by observing that (by the argument in [4, p. 157]) each $f \in \mathfrak{F}(\mathfrak{G}_0)$ is expressible as $\sum \alpha_n \chi X_n$ where $X_n \in \mathfrak{G}_0$ and α_n is real. We have $X_n = \xi^{-1} Y_n$ where $Y_n \in \mathfrak{G}_S$, and then, if we set $h = \sum \alpha_n \chi Y_n$, we have $f = h\xi$.

We deduce:

- (2) If $f \in \mathfrak{F}(\mathfrak{B}_0)$, there exists $h \in \mathfrak{C}_0$ such that $f = h \mod \mathfrak{N}_0$.
- By (1), $f = g\xi$ where $g \in \mathfrak{F}(\mathfrak{B}(S))$. There exists a continuous function g_1 on S such that $g(s) = g_1(s)$ for $s \in S H$, where $H \in \mathfrak{K}S$; and by 3.2, Corollary, we may assume $H \in \mathfrak{B}S$ also. Put $h = g_1\xi$. Using 2.2(1) we see that h is 0-continuous; and f(p) = h(p) for $p \in R N$ where $N = \xi^{-1}H \in \mathfrak{N}_0$ by 2.3(4). Conversely:
 - (3) If $f \in \mathcal{C}_0$, there exists $g \in \mathfrak{F}(\mathfrak{G}_0)$ such that $f = g \mod \mathfrak{N}_0$.

For write $X_{\rho} = \{ \rho \mid \rho \in R, f(p) < \rho \}$; by hypothesis, this is of the form $\bigcup Ry_{\alpha}$ for suitable elements $y_{\alpha} \in A$. Let $z_{\rho} = \bigvee y_{\alpha}$; then $Rz_{\rho} = X_{\rho} \cup H_{\rho}$ where $H_{\rho} = \xi^{-1}(Sz_{\rho} - \bigcup Sy_{\alpha})$. As $Sz_{\rho} - \bigcup Sy_{\alpha}$ is closed and nowhere dense in S, it is contained in a set $K_{\rho} \in \mathcal{K}S \cap \mathcal{B}S$ (3.2, Corollary); hence $H_{\rho} \subset \xi^{-1}K_{\rho} \in \mathcal{M}_{0}$. Put $N = \bigcup \{\xi^{-1}K_{\rho} \mid \rho \text{ rational}\}, g = f\chi(R - N)$. Then $N \in \mathcal{M}_{0}$, and f(p) = g(p) for $p \in R - N$. Let $Y_{\rho} = \{p \mid p \in R, g(p) < \rho\}$; one verifies that, if ρ is rational, $Y_{\rho} = Rz_{\rho} \cap (R - N)$ for $\rho \leq 0$, $Y_{\rho} = Rz_{\rho} \cup N$ for $\rho > 0$. Hence $Y_{\rho} \in \mathcal{B}_{0}$ for all rational ρ , and hence for all ρ , proving $g \in \mathcal{F}(\mathcal{B}_{0})$.

Next we deduce:

(4) $f \in \mathcal{C}_0$ if and only if $f = h\xi$ for some $h \in \mathfrak{D}$.

The "if" is trivial from 2.2(1). Conversely, given $f \in \mathcal{C}_0$, apply (3) and (1)

to obtain $g \in \mathfrak{F}(\mathfrak{B}(S))$ such that $f = g\xi$ modulo \mathfrak{N}_0 . There exists a continuous h on S such that h(s) = g(s) for $s \in S - H$, where $H \in \mathfrak{K}S$. Thus $f(p) = h\xi(p)$ for all $p \in R - N$ where $N \in \mathfrak{K}R$. As R - N is dense in R, and f, $h\xi$ are both continuous, it follows that $f(p) = h\xi(p)$ for all $p \in R$.

- 3.4 Let \mathfrak{M}_0 denote $\mathfrak{B}_0 + \mathfrak{N}_0$ (that is, the family of all sets of the form B+N where $B \in \mathfrak{B}_0$, $N \in \mathfrak{N}_0$). Equivalently (from 2.1(2), 2.2(3), 2.3(4)) \mathfrak{M}_0 consists of all sets of the form Ry+N where $y \in A$, $N \in \mathfrak{N}_0$. Clearly \mathfrak{M}_0 is a Borel field. We say that a function f on R is 0-measurable if all the sets $\{p \mid f(p) < \rho\}$ are in \mathfrak{M}_0 . If $f \in \mathcal{Z}(\mathfrak{N}_0)$ (that is, if $[f] \in \mathfrak{N}_0$) we say that f is 0-negligible. Every 0-continuous function is 0-measurable (cf. end of 2.1). Conversely,
- (1) Given an 0-measurable function f, there exists a unique 0-continuous function g such that $f = g \mod \mathfrak{N}_0$.

By [4, p. 157] we have $f = \sum \alpha_n \chi X_n$ for suitable real numbers α_n and sets $X_n \in \mathfrak{M}_0$ $(n=1, 2, \cdots)$; and each X_n has the form $Rx_n + H_n$ where $H_n \in \mathfrak{N}_0$ and $x_n \in A$. Consider the function $h = \sum \alpha_n \chi Sx_n$ on S; being $\mathfrak{G}S$ -measurable, it differs from a continuous function k on S on a first category set K. Then $g = k\xi$ is 0-continuous, and we have $f(p) = k\xi(p)$ if $p \in R - \{\xi^{-1}K \cup \bigcup H_n\}$. The uniqueness of g is trivial.

Given $\bar{g} \in F(A)$, the class \bar{g} , in the representation space realisation of F(A), contains a unique continuous function g_0 [2, p. 287]. Then $g_0\xi$ is 0-continuous on R; further, from 3.3(4), every 0-continuous function arises in this way. We write $g_0\xi = R_0\bar{g}$; R_0 induces a strict isomorphism (a 1-1 correspondence preserving \leq and finite sums and products) between F(A) and C_0 . It follows that every subset $\{f_\alpha\}$ of C_0 has a least upper bound $f = Vf_\alpha$ in C_0 , and there is a countable subfamily $\{f_{\alpha_n}\}$ of $\{f_\alpha\}$ such that $f = Vf_{\alpha_n}$. Moreover we have

(2) If $f = Vf_{\alpha}$ in \mathfrak{C}_0 , $f(p) = \sup f_{\alpha}(p)$ for all $p \in R - N$, where $N \in \mathfrak{N}_0$.

For we have $f_{\alpha} = g_{\alpha}\xi$ where g_{α} is continuous on S, and if $\bar{g} = V\bar{g}_{\alpha}$ in F(A) then $\bar{g} = V\bar{g}_{\alpha_n}$. If g_0 is the continuous function on S which is in \bar{g} , then $g_0(s) = \sup g_{\alpha_n}(s)$ if $s \in S - H$ where $H \in \mathcal{K}S$, and we can assume (3.2) $H \in \mathcal{B}S$ also. Then $f = g_0\xi$, and $f(p) = \sup f_{\alpha}(p)$ if $p \in R - \xi^{-1}H$ where $\xi^{-1}H \in \mathfrak{N}_0$ by 2.3(4).

Note that, from 2.2(1),

$$(3) R_0 \chi y = \chi R y, \text{if } y \in A.$$

If E is itself a σ -algebra, the cylinder mapping c of F(A) in F(E) is defined, and from 2.5(1) we have, for $\bar{g} \in F(A)$,

(4) $R_0\bar{g}$ is the unique 0-continuous function in the class $c\bar{g}$. (5) For later use, we deduce:

⁽⁵⁾ Even when E is only finitely additive, it would be possible to define a "cylinder mapping" from F(A) to the finitely additive function space corresponding to F(E), whenever A is a σ -subalgebra of E. This mapping would then be realised by R_0 .

(5) If $f \in \mathcal{C}_0^+$, there exist positive real numbers σ_n , elements $x_n \in A$ $(n=1, 2, \cdots)$, and a non-negative function h such that

$$f = \sum \sigma_n \chi R x_n + h.$$

We have $f = R_0 \bar{g}$ where $\bar{g} \in F(A)^+$, and a slight modification of the argument in [4, p. 157, Lemma 1] gives $\bar{g} = \sum \sigma_n \chi x_n$ where $x_n \in A$ and $\sigma_n > 0$. Hence, by (3), $f = \sum \sigma_n \chi R x_n$ on R - N, where $N \in \mathfrak{N}_0$. By continuity, $f \ge \text{every}$ finite sum of terms $\sigma_n \chi R x_n$, so the difference h between f and $\sum \sigma_n \chi R x_n$ is ≥ 0 .

4. The main theorem and its proof (first part).

4.1 We now state the main theorem of this paper. We recall that "algebra" means "Boolean σ -algebra satisfying the countable chain condition" except where the contrary is stated.

THEOREM 1. Let E_0 be an algebra, $F_0 = F(E_0)$ its function space, and ϕ_0 a positive linear operator from F_0 to itself (that is, an F_0 -integral on F_0). There exist an algebra E, of which E_0 is a subalgebra, and a fully homogeneous F-integral ϕ on F, where F = F(E), such that ϕ is a cylinder extension of ϕ_0 .

REMARK. If ϕ_0 is a *strict* F_0 -integral on F_0 , I do not know whether ϕ can always be taken to be a *strict* F-integral on F. If $\phi_0(1)\gg 0$, then automatically $\phi(1)\gg 0$ because ϕ is a cylinder extension.

Before proving the theorem, we note the following consequence of it.

COROLLARY. For each $n=1, 2, \dots, \phi^n$ is also a fully homogeneous F-integral on F, and is a cylinder extension of ϕ_0^n .

This follows from Theorem 1 by an easy induction, using 2.6(5).

- 4.2 The algebras E_n . The proof of Theorem 1 requires a number of steps. First we note that by successive applications of 2.6(7) we obtain a sequence of algebras E_0 , E_1 , E_2 , \cdots , where E_k is a subalgebra of E_{k+1} , and a sequence $\{\phi_k\}$ $(k=0, 1, 2, \cdots)$ where ϕ_k is an F_k -integral on F_k , F_k denoting $F(E_k)$, such that
- (1) ϕ_{k+1} is a cylinder extension of ϕ_k ; that is, $\phi_{k+1}c_{k,k+1}=c_{k,k+1}\phi_k$, where $c_{k,k+1}$ is the cylinder mapping of F_k in F_{k+1} ,
 - (2) $\phi_{k+1}(F_{k+1}^+) \subset c_{k,k+1}(F_k^+)$, and further
 - (3) $(c_{k,k+1})^{-1}\phi_{k+1}$ is a fully homogeneous F_k -integral on F_{k+1} .

(We merely put $\phi_{k+1} = c_{k,k+1}\phi^*$ where ϕ^* is the extension provided by 2.6(7).)

We write $c_{n,n+k}$ for the cylinder mapping of F_n into F_{n+k} $(n, k \ge 0)$, noting that $c_{n,n+k}$ is 1-1, that c_{nn} is the identity mapping, and that $c_{n,n+k+k} = c_{n+k,n+k+k}c_{n,n+k}$. To simplify printing, we write the inverse mapping $(c_{n,n+k})^{-1}$ as $c_{n+k,n}$. By induction, first over k for m=1 and then over m, we obtain

(4)
$$(\phi_{n+k})^m c_{n,n+k} = c_{n,n+k} (\phi_n)^m \text{ on } F_n^+ \qquad (m=1, 2, \cdots).$$

Restated in terms of the inverse cylinder mappings, this is

(5)
$$c_{n+k,n}(\phi_{n+k})^m = (\phi_n)^m c_{n+k,n} \text{ on } c_{n,n+k} F_n^+ \subset F_{n+k}^+.$$

Next we show

(6)
$$(\phi_{n+k})^k F_{n+k}^+ \subset c_{n,n+k} F_n^+$$
, and $c_{n+k,n} (\phi_{n+k})^k$ is a fully homogeneous F_n -integral on F_{n+k} .

In fact, if $r \ge 1$, $c_{n+r,n+r-1}\phi_{n+r}$ is a fully homogeneous F_{n+r-1} -integral on F_{n+r} , by (3). Now, on F_{n+k} , put

$$\psi = (c_{n+1,n}\phi_{n+1})(c_{n+2,n+1}\phi_{n+2}) \cdot \cdot \cdot (c_{n+k,n+k-1}\phi_{n+k}).$$

Then ψ is a fully homogeneous F_n -integral on F_{n+k} , by 2.6(5). But, in view of (5),

$$\psi = c_{n+1,n}(\phi_{n+1}c_{n+2,n+1}) \cdot \cdot \cdot (\phi_{n+k-1}c_{n+k,n+k-1})\phi_{n+k}$$

$$= c_{n+1,n}c_{n+2,n+1}\phi_{n+2}\phi_{n+2}c_{n+3,n+2} \cdot \cdot \cdot$$

$$= c_{n+2,n}(\phi_{n+2})^2c_{n+3,n+2}\phi_{n+3} \cdot \cdot \cdot$$

$$= c_{n+2,n}c_{n+3,n+2}(\phi_{n+3})^3 \cdot \cdot \cdot = c_{n+k,n}(\phi_{n+k})^k \text{ finally.}$$

This also shows $c_{n+k,n}(\phi_{n+k})^k$ is defined for all $\bar{f} \in F_{n+k}^+$, giving the first part of the assertion.

REMARK. It follows from (6) that $(\phi_n)^m$ is an F_n -integral on F_n provided $m \le n$; compare footnote 3.

- 4.3 The algebra E'. Let $E' = \bigcup E_n$, where E_0 , E_1 , E_2 , \cdots is the sequence of algebras obtained in 4.2. For x, $y \in E'$, define $x \leq y$ to mean that $x \leq y$ in some E_n (and so in E_m for all $m \geq n$). It is easily verified that E' becomes a finitely additive Boolean algebra satisfying the countable chain condition, and that each E_n is a complete subalgebra of E'. Let R be the representation space of E'. The required extended function space F of Theorem 1 (4.1) will be defined by a certain realisation $\mathfrak{F}(R, \mathfrak{B}, \mathfrak{N})$; but before we define \mathfrak{B} and \mathfrak{N} it is convenient to have the extended integral ϕ more or less available. This we achieve by defining an operator Φ on a suitable class \mathfrak{E}' of continuous functions on R (4.5). By measure-theoretic considerations we are then able to extend a modified form of Φ to an operator Φ^* on the family $\mathfrak{F}(\mathfrak{M}')$ of \mathfrak{M}' -measurable functions, where \mathfrak{M}' is a certain Borel field of subsets of R (4.8); and all that remains is to define the ideal \mathfrak{N} of null sets—an operation of some delicacy since \mathfrak{N} must be large enough to produce the countable chain condition and not so large as to annihilate Φ^* .
- 4.4 The function-class \mathfrak{C}' . As in §2, we let Rx denote the open-closed subset of R corresponding to $x \in E'$. We write $\mathcal{E}' = \{Rx \mid x \in E'\}$, $\mathcal{E}_k = \{Rx \mid x \in E_k\}$, $\mathfrak{C}' = \mathfrak{C}R = \mathcal{E}'$ borel field (of subsets of R) generated by \mathcal{E}' , $\mathfrak{C}_k = \mathcal{E}'$ borel field generated by \mathcal{E}_k . A set $N \subset R$ is called k-negligible if it is contained in some $Y \in \mathfrak{C}_k \cap \mathcal{K}R$; N is negligible if it is of the form UN_k ($k = 0, 1, \cdots$) where N_k is k-negligible. The families of k-negligible and of negligible sets are written

 \mathfrak{N}_k , \mathfrak{N}' respectively; they are σ -ideals. We have $\mathfrak{B}_0 \subset \mathfrak{B}_1 \subset \cdots \subset \mathfrak{B}'$, $\mathfrak{N}_0 \subset \mathfrak{N}_1 \subset \cdots \subset \mathfrak{N}' \subset \mathfrak{K}R$. We say that a function on R is k-negligible or negligible if it is in $\mathbb{Z}(\mathfrak{N}_k)$ or $\mathbb{Z}(\mathfrak{N}')$, respectively.

We define $\mathfrak{M}_k = \mathfrak{G}_k + \mathfrak{N}_k$ (cf. 3.4), $\mathfrak{M}_k' = \mathfrak{G}_k + \mathfrak{N}'$, $\mathfrak{M}' = \mathfrak{G}' + \mathfrak{N}'$; all these are Borel fields. By 3.3(2), $\mathfrak{G}_k \subset \mathcal{E}_k + \mathfrak{N}_k$, so that $\mathfrak{M}_k = \mathcal{E}_k + \mathfrak{N}_k$, and hence $\mathfrak{M}_k' = \mathcal{E}_k + \mathfrak{N}'$. Clearly $\mathfrak{M}_0 \subset \mathfrak{M}_1 \subset \cdots$, $\mathfrak{M}_0' \subset \mathfrak{M}_1' \subset \cdots$, and $\mathfrak{M}_k \subset \mathfrak{M}_k' \subset \mathfrak{M}'$. If $x \in E_k$, the correspondence between x and $(Rx) + \mathfrak{N}_k$ is a (complete) isomorphism between E_k and $\mathfrak{M}_k/\mathfrak{N}_k$; similarly, for $x \in E'$, the correspondence between x and $(Rx) + \mathfrak{N}'$ is a *finite* isomorphism between E' and a *finitely* additive subalgebra of $\mathfrak{M}'/\mathfrak{N}'$. (Note that in general E' need not be a σ -algebra, and that the σ -algebra $\mathfrak{M}'/\mathfrak{N}'$ need not satisfy the countable chain condition.) If we restrict x to E_k here, we obtain an isomorphism of E_k onto the (complete) subalgebra $\mathfrak{M}_k'/\mathfrak{N}'$ of $\mathfrak{M}'/\mathfrak{N}'$.

We call a function f on R "k-continuous" if for each real ρ $\{\rho | f(p) > \rho\}$ is a union of sets in \mathcal{E}_k ; that is, if f is "0-continuous" in the sense of 3.3, taking E = E', $A = E_k$. We write \mathcal{C}_k for the family of all k-continuous functions on R, and \mathcal{C}' for $U\mathcal{C}_k$; note that $\mathcal{C}_0 \subset \mathcal{C}_1 \subset \cdots$. A function is called "k-measurable" if it is in $\mathfrak{F}(\mathfrak{M}_k)$ (this notation is consistent with that in 3.4), "k'-measurable" if it is in $\mathfrak{F}(\mathfrak{M}_k')$. The following assertions follow easily from 3.3(3) and 3.4(1):

- (1) Every k-continuous function is k-measurable, and hence k'-measurable.
- (2) If f is k-measurable, there is a unique k-continuous function g_k such that $f = g_k \mod \mathfrak{R}_k$; and $g_k = g_{k+1} = \cdots$.

Let R_k be the isomorphism between $F_k = F(E_k)$ and \mathfrak{C}_k described in 3.4 (where we replace A by E_k , E by E' and R_0 by R_k). (6) If we use the realisation $\mathfrak{F}(R, \mathfrak{M}'_k, \mathfrak{N}')$ of F_k , a typical element \bar{f} of F_k consists of all functions differing from a k'-measurable function f by a negligible function, the cylinder mapping $c_{k,k+n}$ becomes the identity mapping, and $R_k\bar{f}$ is the unique k-continuous function in \bar{f} . It follows that, for arbitrary realisations,

(3)
$$R_k \bar{f} = R_{k+n} c_{k,k+n} \bar{f}$$
 $(k, n = 0, 1, 2, \dots, \bar{f} \in F_k).$

4.5 The operator Φ . Given $f \in \mathcal{C}'^+$, we have $f \in \mathcal{C}_k$ for some k; put $\bar{g} = R_k^{-1}f$ $\in F_k$, and define $\Phi f = R_k \phi_k \bar{g} \in \mathcal{C}_k^+$. This definition does not depend on the choice of k, as follows from 4.4(3) and 4.2(4), so Φ is a single-valued mapping of \mathcal{C}'^+ into itself. Φ and its iterates have the following properties; in all of them, $k = 0, 1, 2, \dots, m, n = 1, 2, \dots$, and, where no proofs are given, the proofs are straightforward inductions over m.

- (1) If $f = R_k \bar{g}$, where $\bar{g} \in F_k^+$, then $\Phi^m f = R_k \phi_k^m \bar{g}$.
- $(2) \Phi^m(C_{\mathbf{k}+m}^+) \subset C_{\mathbf{k}}^+.$

The case m=1 of (2) follows from the definition of Φ , together with 4.2(2) and 4.4(3); the general case then follows by induction over m.

⁽⁶⁾ Our notation in this paragraph is not quite exact; some isomorphisms have been suppressed. Strictly speaking, R_k depends on which realisation of F_k is used, but this should not cause confusion here.

(3) If $f, g \in \mathbb{C}'^+$ and a, b are non-negative real numbers,

$$\Phi^m(af+bg)=a\Phi^mf+b\Phi^mg.$$

- (4) Let f_n , $f \in \mathcal{C}_k^+$, and write $\Phi^m f_n = g_n$, $\Phi^m f = g$. Suppose that $f_n(p) \to f(p)$ for each $p \in R N$, where $N \in \mathfrak{N}_k$, and that either (a) $f_1 \leq f_2 \leq \cdots$ or (b) $f_1 \geq f_2 \geq \cdots$ and $g_1(p) < \infty$ if $p \in R N$. Then $g_n(p) \to g(p)$ for all $p \in R N^*$ where $N^* \in \mathfrak{N}_k$.
- (5) If $X \in \mathcal{E}_{k+m}$, $g \in \mathcal{C}_k^+$, and $g \leq \Phi^m \chi X$, then $g = \Phi^m \chi Y$ for some $Y \in \mathcal{E}_{k+m}$. Here induction is not needed for the proof, which is a straightforward calculation based on 4.2(6).

As an immediate consequence of (5), Φ^m is "fully homogeneous" in the following sense:

(6) If $X \in \mathcal{E}'$, $g \in \mathcal{C}'^+$, and $g \leq \Phi^m \chi X$, then $g = \Phi^m \chi Y$ for some $Y \in \mathcal{E}'$.

Finally Φ^m has the following σ -finiteness property:

(7) Given $k = 0, 1, 2, \cdots$, there exist disjoint sets $G_n \in \mathcal{E}_{k+1}$ $(n = 1, 2, \cdots)$ such that $R - \bigcup G_n \in \mathcal{R}_{k+1}$ and $\Phi^k \chi G_n \leq 1$.

For, by 4.2(6), $c_{k+1,1}(\phi_{k+1})^k$ is a fully homogeneous F_1 -integral on F_{k+1} . The argument proving 2.6(5) shows that elements y_1, y_2, \cdots exist in E_{k+1} such that $\forall y_n = e$ and $\phi_{k+1}^k \chi y_n \leq 1$. We take $G_n = Ry_n$; then $G_n \in \mathcal{E}_{k+1}, R - \bigcup G_n$ is (k+1)-negligible, and finally, by (1) above, $\Phi^k \chi G_n = R_{k+1} \phi_{k+1}^k \chi y_n \leq 1$.

- 4.6 The measures μ_p and ν_p . Using 4.5(7), we take a sequence of disjoint sets $G_n \in \mathcal{E}_1$ such that $R UG_n = Z \in \mathfrak{N}_1$ and $\Phi_X G_n \leq 1$; these sets will remain fixed throughout the rest of the proof. Let p be any point of R, fixed for the moment. For each $X \in \mathcal{E}'$, put $\mu_p(X) = \text{value}$ at p of the function $\sum_n \Phi_X(X \cap G_n)$. From 4.5(3), μ_p is a finitely additive (non-negative) measure on \mathcal{E}' , and $\mu_p(G_n) \leq 1$. Further, if X_1, X_2, \cdots is any sequence of disjoint sets in \mathcal{E}' , and if $X = UX_n \in \mathcal{E}'$, then $\mu_p(X) = \sum_n \mu_p(X_n)$ because X is compact and each X_n is open, so that all but a finite number of the sets X_n must be empty. There is therefore [1, p. 2] an extension of μ_p to a complete countably additive measure μ_p' on a Borel field containing $\mathfrak{BE}' = \mathfrak{B}'$. (7) For $X \in \mathfrak{B}'$ define $\nu_p(X) = \sum_n \mu_p'(X \cap G_n) = \mu_p'(X Z)$. Then ν_p is a countably additive σ -finite measure on \mathfrak{B}' , which extends μ_p . We assert:
- (1) Given $X \in \mathcal{E}'$, $\nu_p(X) = (\Phi \chi X)(p)$ for each $p \in R N_X$, where $N_X \in \mathfrak{A}'$. For say $X \in \mathcal{E}_k$; then $G_n \in \mathcal{E}_1 \subset \mathcal{E}_k$ (we may assume k > 0), so $X \cap G_n \in \mathcal{E}_k$ and $\nu_p(X) = \sum_n \mu_p(X \cap G_n) = \sum \{ \text{value at } p \text{ of } \Phi \chi(X \cap G_n) \}$. Now each $\chi(X \cap G_n) \in \mathcal{C}_k$, and also $\chi(X) \in \mathcal{C}_k$ and $\sum_{\chi} \chi(X \cap G_n) = \chi X$ on R Z where $Z \in \mathfrak{A}_k$. Hence by 4.5(4) we have $\Phi(\sum_{\chi} \chi(X \cap G_n), 1 \leq n \leq m) \to \Phi \chi X$ on $R N_X$ for some $N_X \in \mathfrak{A}_k \subset \mathfrak{A}'$, and the assertion follows.
- 4.7 The outer measure function ν^* . For arbitrary $X \subset R$ and $p \in R$, let $\nu_p^* X$ denote the outer measure of X with respect to the measure ν_p . We write $\nu^* X$ for the function on R whose value at p is $\nu_p^* X$. If $X \in \mathfrak{G}'$, X is ν_p -measurable for every $p \in R$. Generally, if X is ν_p -measurable except for a negligible set of p's, we write νX instead of $\nu^* X$.

⁽⁷⁾ A "complete" measure is one for which all subsets of null sets are measurable.

(1) If $X \in \mathfrak{N}'$, νX exists and is negligible.

We have $X = \bigcup X_k$ where $X_k \in \mathfrak{N}_k$, and we may suppose $k \ge 1$. As the sets G_n are disjoint and ν_p -measurable for every p, we have $\nu^*X_k = \sum_n \nu^*(X_k \cap G_n)$, so it is enough to prove that $\nu^*(X_k \cap G_n)$ is k-negligible. By 3.2, $X_k \subset \bigcup_m \bigcap_k Rx_{mh}$ where $x_{mh} \in E_k$ and, for fixed m, $x_{m1} \ge x_{m2} \ge \cdots$ and $\bigwedge_k x_{mh} = 0$. We have $G_n = Ry_n$ where $y_n \in E_1 \subset E_k$. Let $Z_{mn} = \bigcap_k Rx_{mh} \cap G_n = \bigcap_k R(x_{mh} \wedge y_n)$. The sequence $\{\chi R(x_{mh} \wedge y_n)\}$ $(h=1, 2, \cdots)$ of functions of \mathfrak{C}_k^+ decreases monotonically, and its limit is 0 outside a k-negligible set; further, $\Phi \chi R(x_{m1} \wedge y_n) \le \Phi \chi G_n \le 1$. Hence, by 4.5(4), $\nu R(x_{mh} \wedge y_n) = \Phi \chi R(x_{mh} \wedge y_n) \to 0$ except on a k-negligible set as $k \to \infty$, proving $\nu^* Z_{mn}$ is k-negligible. As $X_k \cap G_n \subset \bigcup_m Z_{mn}$, this proves $\nu^*(X_k \cap G_n)$ k-negligible, as required.

(2) If $X \in \mathfrak{M}'$, X is ν_p -measurable for all $p \in R - N_X$, where $N_X \in \mathfrak{N}'$; and $\nu X \in \mathfrak{F}(\mathfrak{M}')$.

First suppose $X \in \mathcal{E}'$. Then X is ν_p -measurable for all $p \in R$. Again, write $X_n = X \cap G_n$; we have $\nu X = \sum \nu X_n = \sum \Phi \chi X_n$ where $\Phi \chi X_n \in \mathcal{C}' \subset \mathfrak{F}(\mathfrak{M}')$, from 3.3(3), showing that $\nu X \in \mathfrak{F}(\mathfrak{M}')$.

Now suppose $X \in \mathfrak{G}'$. Again X is ν_p -measurable for all $p \in R$, and as above it is enough to prove that each $\nu(X \cap G_n) \in \mathfrak{F}(\mathfrak{M}')$. Thus we may assume $X \subset G_n$. The \mathfrak{M}' -measurability of νX now follows by transfinite induction over the rank α of X considered as in the Borel field generated by sets in \mathcal{E}' which are subsets of G_n ; we use the facts that X is a limit of a monotone sequence of sets of smaller rank and of finite measure, and that a (pointwise) limit of a sequence of functions in $\mathfrak{F}(\mathfrak{M}')$ is in $\mathfrak{F}(\mathfrak{M}')$.

Finally, if $X \in \mathfrak{M}'$, X = Y + Z' where $Y \in \mathfrak{A}'$, $Z' \in \mathfrak{N}'$; if $p \in R - N_X$ where N_X is negligible, $\nu_p^*(Z') = 0$ by (1), and X is ν_p -measurable and $\nu_p(X) = \nu_p(Y)$. Thus $\nu(X) = \nu(Y) \in \mathfrak{F}(\mathfrak{M}')$.

4.8 The operator Φ^* . As a corollary to the last result, we have

(1) If $f \in \mathfrak{F}(\mathfrak{M}')^+$, then f is ν_p -measurable except for a negligible set of p's. We define $\Phi_p^* f = \inf \{ \int_R g d\nu_p | g$ is ν_p -measurable and $g \ge f \}$. The function on R whose value at p is $\Phi_p^* f$ is denoted by $\Phi^* f$. It is easy to verify that, for arbitrary $X \subset R$,

$$\Phi^* \chi X = \nu^* X.$$

We deduce

(3) If $f \in \mathfrak{F}(\mathfrak{M}')^+$, then $\Phi^* f \in \mathfrak{F}(\mathfrak{M}')^+$.

For, by a familiar argument, $f = \sum \alpha_n \chi X_n$ where $\alpha_n > 0$, $X_n \in \mathfrak{M}'$. By 4.7(2), X_n is ν_p -measurable for all $p \in R - N_n$ where $N_n \in \mathfrak{N}'$. Put $N = \bigcup N_n$; then, if $p \in R - N$, f is ν_p -measurable and consequently $\Phi_p^* f = \int_R f d\nu_p = \sum \alpha_n \nu_p(X_n)$ where, for each n, the function $\nu_p(X_n)$ of p is in $\mathfrak{F}(\mathfrak{M}')^+$ by 4.7(2). Thus $\Phi^* f$ differs from an \mathfrak{M}' -measurable function at most on N, and is therefore \mathfrak{M}' -measurable.

(4) If $f \ge 0$ and $[f] \in \mathfrak{N}'$, then $[\Phi^* f] \in \mathfrak{N}'$. Let [f] = X. By 4.7(1), $\nu_n^* X = 0$ for all $\rho \in R - N$ where $N \in \mathfrak{N}'$. If $\rho \in R - N$, we may take $g = \infty \chi X$ in the definition of $\Phi_p^* f$, showing $\Phi_p^* f = 0$ for $p \in R - N$.

(5) If $f_n \in \mathfrak{F}(\mathfrak{M}')^+$ $(n=1, 2, \cdots)$, then $\Phi_p^*(\sum f_n) = \sum \Phi_p^* f_n$ except for a negligible set of p's.

The proof resembles that of (3). We immediately deduce:

(6) If $f_n \in \mathfrak{F}(\mathfrak{M}')^+$ $(n=1, 2, \cdots)$, $f_1 \geq f_2 \geq \cdots$, and $\Phi_p^* f_1 < \infty$ except on a negligible set, then $\Phi_p^*(\lim f_n) = \lim \Phi_p^* f_n$ except on a negligible set.

If $f \in \mathbb{C}'^+$, the value of Φf at $p \in R$ is denoted by $\Phi_p f$; similarly we define $\Phi_p^m f$.

(7) If $f \in \mathfrak{C}'^+$, then $\Phi_p^* f = \Phi_p f$ if $p \in R - N$ where $N \in \mathfrak{N}'$.

Say $f \in \mathcal{C}_k$. By 3.4(5) we may write $f = \sum \sigma_n \chi X_n + g$ where $\sigma_n > 0$, $X_n \in \mathcal{E}_k$, $g \ge 0$ and $[g] \in \mathfrak{N}_k \subset \mathfrak{N}'$. From 4.5(4), if $p \in R - N_1$ where $N_1 \in \mathfrak{N}_k$, $\Phi_p f = \sum \Phi_p(\sigma_n \chi X_n) = \sum \sigma_n \nu_p(X_n)$ by 4.6, if $p \in N_2$, where $N_2 \in \mathfrak{N}_k$. On the other hand, from (4), $\Phi_p^* g = 0$ except on $N_3 \in \mathfrak{N}'$, and outside N_3 we have that f is ν_p -measurable and consequently $\Phi_p^* f = \sum \sigma_n \int \chi X_n d\nu_p = \sum \sigma_n \nu_p(X_n)$. Thus $\Phi_p^* f = \Phi_p f$ if $p \in R - (N_1 \cup N_2 \cup N_3)$.

Since Φ^* maps $\mathfrak{F}(\mathfrak{M}')^+$ in itself, the iterates Φ^{*m} $(m=1, 2, \cdots)$ are all defined; it is easy to see that properties (3)-(6) apply to Φ^{*m} , and similarly (7) gives (with a little more trouble):

- (7') If $f \in \mathbb{C}'^+$, $\Phi^{*m}f$ and $\Phi^{m}f$ differ only on a negligible set.
- 4.9 Support properties of Φ^* . We list the following properties of Φ^* for later use; they all follow easily from the foregoing. Throughout, it is assumed that $f, f_1, f_2, \cdots \in \mathfrak{F}(\mathfrak{M}')^+$.
 - (1) $[\Phi^{*mf}] \in \mathfrak{M}'$.
 - (2) If $[f] \in \mathfrak{N}'$, $[\Phi^{*m}f] \in \mathfrak{N}'$.
 - (3) $\bigcup_n \left[\Phi^{*m} f_n\right] \subset \left[\Phi^{*m} \sup f_n\right] \subset \left[\Phi^{*m} \sum f_n\right]$, and

$$[\Phi^{*m}\sum f_n]- \cup_n [\Phi^{*m}f_n] \in \mathfrak{N}'.$$

(4) If $[f_1]+[f_2]\in\mathfrak{N}'$, then $[\Phi^{*m}f_1]+[\Phi^{*m}f_2]\in\mathfrak{N}'$. In particular,

$$[\Phi^{*n}f] + [\Phi^{*n}\chi[f]] \in \mathfrak{N}'.$$

4.10 The set-operator I. As a preliminary to defining the final ideal \mathfrak{A} of "null sets," we define I(X), for $X \in \mathfrak{M}'$, by: $I(X) = [\sum \Phi^{*m} \chi X]$, where $m = 0, 1, 2, \cdots$. Taking m = 0 shows

$$(1) I(X) \supset X.$$

The following results follow easily with the aid of 4.9. It is assumed throughout that $X, X_1, X_2, \cdots \in \mathfrak{M}'$.

- (2) $I(X) \in \mathfrak{M}'$.
- (3) If $X \in \mathfrak{N}'$, $I(X) \in \mathfrak{N}'$.
- (4) $I(X) = \bigcup [\Phi^{*m}\chi X](m \ge 0).$
- (5) If $X \subset Y$, $I(X) \subset I(Y)$.
- (6) $I(UX_n) = UI(X_n) \cup N$, where $N \in \mathfrak{N}'$.

(7) $I(X+Y)\supset I(X)+I(Y) \mod \mathfrak{N}'$; hence if $X+Y\in\mathfrak{N}'$,

$$I(X) + I(Y) \in \mathfrak{N}'$$
.

- (8) $I(I(X)) = I(X) \mod \mathfrak{N}'$.
- (9) If $f \in \mathfrak{F}(\mathfrak{M}')^+$, then $[\sum \Phi^{*m} f] = I[f] \mod \mathfrak{N}'$, and hence

$$I[\Phi^*f] \subset I[f] \mod \mathfrak{N}'$$
.

As the last four of these statements are less trivial than the others, we sketch their proofs.

Proof of (6). By (4) and 4.9(3),

$$I(\bigcup X_n) = \bigcup_{m} \left[\Phi^{*m} \chi \cup X_n \right] \subset \bigcup_{m} \left[\Phi^{*m} \sum \chi X_n \right] = \bigcup_{m} \left\{ \bigcup_{n} \left[\Phi^{*m} \chi X_n \right] \cup Z_m \right\}$$

where $Z_m \in \mathfrak{N}'$, $= \bigcup_{m,n} [\Phi^{*m} \chi X_n] \cup Z' = \bigcup I(X_n) \cup Z'$ where $Z' \in \mathfrak{N}'$. But $I(\bigcup X_n) \supset I(X_n)$, by (5).

Proof of (7). By (6), $I(X) = I(X \cap Y) \cup I(X - Y) \cup N_1$, $I(Y) = I(X \cap Y) \cup I(Y - X) \cup N_2$, where N_1 , $N_2 \in \mathfrak{N}'$; so $I(X) + I(Y) \subset I(X - Y) \cup I(Y - X) \cup N_1 \cup N_2 \subset I(X + Y) \cup (N_1 \cup N_2)$ by (5).

Proof of (8). Using (4), (6) and 4.9(5), we find

$$I(I(X)) = \bigcup_{m} \bigcup_{n} \left[\Phi^{*n} \chi \left[\Phi^{*m} \chi(X) \right] \right] = \bigcup_{m,n} \left[\Phi^{*m+n} \chi X \right] \bmod \mathfrak{N}' = I(X) \bmod \mathfrak{N}'.$$

Proof of (9). From (4) and 4.9(5), $I[f] = [\Phi^{*m}\chi[f]] = U[\Phi^{*m}f] \mod \mathfrak{N}' = [\sum \Phi^{*m}f]$. Hence $[\Phi^*f] = I[f] \mod \mathfrak{N}'$, giving (from (3) and (8)) $I[\Phi^*f] \subset I(I[f]) \mod \mathfrak{N}' = I[f] \mod \mathfrak{N}'$.

- 5. Proof of Theorem 1 concluded.
- 5.1 The σ -ideal \mathfrak{A} . Define $\mathfrak{A} = \{X \mid \text{there exists } Y \in \mathfrak{M}' \text{ such that } X \subset Y \text{ and } I(Y) \in \mathfrak{K}R \}$. We have at once:
 - (1) \mathfrak{A} is a σ -ideal. (From 4.10(6).)
 - (2) $\mathfrak{N}' \subset \mathfrak{N} \subset \mathfrak{K} R$. (From 4.10(3) and 4.10(1).)
 - (3) If $X \in \mathcal{E}' \cap \mathfrak{N}$, X is empty. (From (2).)
 - (4) If $f \in \mathfrak{F}(\mathfrak{M}')^+$ and $[f] \in \mathfrak{N}$, then $[\Phi^*f] \in \mathfrak{N}$. (From 4.10.)
 - (5) If $f, g \in \mathfrak{F}(\mathfrak{M}')^+$ and $[f] + [g] \in \mathfrak{N}$, then $[\Phi^* f] + [\Phi^* g] \in \mathfrak{N}$.

For let $R-X=[f]\cap [g]$, and put $f=f\chi X+f'$, $g=g\chi X+g'$. Then [f']=[g'], so $[\Phi^*f']=[\Phi^*g']$ mod \mathfrak{N}' , by 4.9(4). Also $\Phi^*f=\Phi^*f'+\Phi^*f\chi X$ mod $\mathfrak{N}'=\Phi^*f'$ mod \mathfrak{N} by (4) and (2). Thus, modulo \mathfrak{N} , $[\Phi^*f]=[\Phi^*f']=[\Phi^*g']=[\Phi^*g']$.

- 5.2 The algebra E. Now put $\mathfrak{B} = \mathfrak{M}' + \mathfrak{N}$; this is a Borel field containing \mathfrak{N} . Define $E = \mathfrak{B}/\mathfrak{N}$, a Boolean σ -algebra. Since $\mathfrak{M}' = \mathfrak{B}' + \mathfrak{N}'$ and $\mathfrak{N} \supset \mathfrak{N}'$, we have $\mathfrak{B} = \mathfrak{B}' + \mathfrak{N}$, and a typical element of E is thus the class of sets $(X) + \mathfrak{N}$ (= $\{X + N \mid N \in \mathfrak{N}\}$) where $X \in \mathfrak{B}' = \mathfrak{B}R$. We now prove
 - (1) E satisfies the countable chain condition.

Suppose α is an uncountable family of sets $A \in \alpha'$, none of which is in \mathfrak{N} ,

but such that whenever A_1 , A_2 are distinct members of α then $A_1 \cap A_2 \in \mathfrak{N}$; we must derive a contradiction. We may suppose that α consists of just \aleph_1 sets; well-order α as $\{A_{\alpha} | \alpha < \omega_1\}$, and let $A'_{\alpha} = A_{\alpha} - \bigcup \{A_{\beta} | \beta < \alpha\}$; then $A'_{\alpha} \in \mathfrak{B}'$, $A_{\alpha} - A'_{\alpha} \in \mathfrak{N}$, and distinct sets A'_{α} are disjoint. Thus, replacing α by $\{A'_{\alpha} | \alpha < \omega_1\}$, we may further assume that α consists of disjoint sets.

For each $A \in \mathfrak{A}$, there is a least $n \ge 0$ such that $[\Phi^{*n}\chi A]$ is of second category in R (else $I(A) \in \mathfrak{K}R$ and $A \in \mathfrak{N}$). Let \mathfrak{A}_k be the subfamily of \mathfrak{A} for which this n has the value k; then \mathfrak{A}_k must be uncountable for some k. If k=0, we have that each $A \in \mathfrak{A}_0$ is itself of second category; but (2.1(2)) each $A \in \mathfrak{B}'$ has the form Ra + H where $a \in E'$ and $H \in \mathfrak{K}R$, and if A is of second category then $a \ne o$. So if \mathfrak{A}_0 is uncountable, E' would not satisfy the countable chain condition. We may therefore assume that \mathfrak{A}_k is uncountable for some $k \ge 1$.

By 4.5(7) and 4.8(7) there exist sets $Y_1, Y_2, \dots \in \mathcal{E}_k$ such that $R - \bigcup Y_n \in \mathfrak{N}_k \subset \mathfrak{N}'$ and $\Phi^{*k}\chi Y_n \leq 1 \mod \mathfrak{N}'$. For every $A \in \mathfrak{G}'$ we have $[\Phi^{*k}\chi A] = \bigcup_n [\Phi^{*k}\chi(A \cap Y_n)] \mod \mathfrak{N}'$, by 4.9(2) and 4.9(3); hence if $A \in \mathfrak{A}_k$ we have that $[\Phi^{*k}\chi(A \cap Y_n)]$ is of second category for some n. There is therefore some n, which we may assume to be 1, to which uncountably many sets $A \in \mathfrak{A}_k$ correspond; we replace each such A by $A \cap Y_1$, and thus obtain an uncountable family $\mathfrak{A}' \subset \mathfrak{A}'$ of disjoint sets satisfying:

(2) If $A \in \mathcal{C}'$, then $A \subset Y_1$ and $[\Phi^{*k}\chi A]$ is of second category.

From 4.9(1), there exists for each $A \subseteq \alpha'$ a positive integer n(A) and a set $W(A) \subseteq \mathfrak{M}'$ of second category such that $\Phi^{*k}\chi A \ge (1/n(A))\chi W(A)$. There is a positive integer h such that n(A) = h for uncountably many sets in α' ; we may thus assume further that

(3) If $A \in \mathfrak{A}'$, $\Phi^{*k} \chi A \ge (1/h) \chi W(A)$.

For each subset $\mathfrak{A} \subset \mathfrak{A}'$, put $W(\mathfrak{A}) = \bigcap \{W(A) | A \in \mathfrak{A}\}\$. Then:

(4) If \mathfrak{X} has more than h elements, $W(\mathfrak{X})$ is of first category.

It is enough to prove this when \mathfrak{X} has h+1 elements A_0 , A_1 , \cdots , A_h . As these sets are disjoint, we have, modulo \mathfrak{N} -negligible functions, from (3), $(h+1)\chi W(\mathfrak{X}) \leq \sum \{h\Phi^{*k}\chi A_i | 0 \leq i \leq h\} = h\Phi^{*k}(\sum \chi A_i)$ (see end of 4.8) $\leq h\Phi^{*k}\chi(\mathsf{U}A_i) \leq h\Phi^{*k}\chi Y_1 \leq h$, proving $W(\mathfrak{X}) \in \mathfrak{N} \subset \mathfrak{X}R$.

Consider now the family $\{y\}$ of maximal subsets y of α' for which W(y) is of second category; each $A \in \alpha'$ is in at least one y (from (4), since A is itself of second category), and each y contains at most h sets $A \in \alpha'$. Further, if $y_1 \neq y_2$, $W(y_1)$ and $W(y_2)$ are in \mathfrak{M}' , are both of second category, and have intersection of first category. By an argument similar to that used above for k=0, there are only countably many sets W(y), and therefore only countably many sets y, each with y elements. Thus y =Uy is countable, giving the desired contradiction.

5.3 The operator ϕ . Let F = F(E); we define a mapping ϕ of F^+ in F^+ which will be proved to satisfy the requirements of Theorem 1 (4.1). The elements of F are of the form $\tilde{f} = f + \mathbb{Z}(\mathfrak{N})$, where $f \in \mathfrak{F}(\mathfrak{M}')$; here $f + \mathbb{Z}(\mathfrak{N})$ denotes the

family of all functions f+h where h is \mathfrak{A} -negligible. Since $\mathfrak{B}=\mathfrak{B}'+\mathfrak{A}$, we may require $f\in\mathfrak{F}(\mathfrak{B}')$ here.

Define $\phi \tilde{f} = \Phi^* f + Z(\mathfrak{N})$, where $\tilde{f} = f + Z(\mathfrak{N})$. From 4.8(3)–(5), this definition is single-valued and ϕ maps F^+ in itself. Further, ϕ is countably additive from 4.8(5), and σ -finite from 4.5(7) and 4.8(7); ϕ is thus an F-integral on F (2.6). To verify that ϕ is a cylinder extension of ϕ_0 , we first observe that the correspondence $x \leftrightarrow (Rx) + \mathfrak{A}$ is (from 5.1(3)) a finitely additive isomorphism between E' and a finitely additive subalgebra of E which, restricted to E_k , is a complete isomorphism (because $\mathfrak{N} \supset \mathfrak{N}' \supset \mathfrak{N}_k$). We may identify E_k with the complete subalgebra $\{Rx + \mathfrak{N} | x \in E_k\}$ of E (equivalently, we take $E_k = (\mathfrak{G}_k + \mathfrak{N})/\mathfrak{N}$; and similarly we may identify F_k with the set of function classes $f + \mathbf{Z}(\mathfrak{N})$, $f \in \mathfrak{F}(\mathfrak{G}_k)$ —that is, we realise F_k as $\mathfrak{F}(R, \mathfrak{G}_k + \mathfrak{N}, \mathfrak{N})$. The cylinder mapping of F_k in F is now the identity mapping of F_k . If $f \in \mathfrak{F}(\mathfrak{B}_k)^+$, so that $\tilde{f}=f+\mathbb{Z}(\mathfrak{N})$ is a typical element of F_k^+ , we again have that $R_k\tilde{f}$ is the unique k-continuous function in \tilde{f} (compare 4.4)(8). Now if $f \in \mathfrak{F}(\mathfrak{B}_k)^+$, $\Phi^*f = \Phi^*R_k\tilde{f} \mod \mathfrak{R}$ by 4.8(4), (5), $= \Phi R_k\tilde{f} \mod \mathfrak{R}$ by 4.8(7) $= R_k\phi_kf \mod \mathfrak{R}$ by definition of Φ , so that $\phi_k \tilde{f} = (\Phi^* f)^{\tilde{n}} = \phi f$. That is, ϕ is a cylinder extension of ϕ_k $(k=0, 1, 2, \cdots)$, and in particular of ϕ_0 .

5.4 Full homogeneity. All that remains is to show that ϕ is fully homogeneous. Write $\lambda x = \phi \chi x$ for $x \in E$; thus λ is countably additive and σ -finite. Let $z_0 = V\{z \mid z \in E, \lambda z = 0\}, z_1 = e - z_0, E^1 = \{z \mid z \in E, z \leq z_1\}$. We first show:

(1) Given $x \in E$, there exists $\sigma x \in E^1$ such that, for all $y \in E$,

$$\lambda(y \wedge \sigma x) = (\lambda y) \chi x.$$

(The element σx is in fact unique, but we do not need this.)

For let H be the set of elements $x \in E$ for which such a σx exists. Then (2) if $x \in H$ and $y \in E$, $\lambda \{y \land (z_1 - \sigma x)\} = (\lambda y)\chi(-x)$.

For suppose first that $\lambda y \ll \infty$. Then

$$\lambda(y) = \lambda(y \wedge z_1) = \lambda(y \wedge \sigma x) + \lambda(y \wedge (z_1 - \sigma x))$$
$$= (\lambda y)\chi x + \lambda(y \wedge (z_1 - \sigma x)),$$

so
$$\lambda(y \wedge (z_1 - \sigma x)) = (\lambda y)(1 - \chi x) = (\lambda y)\chi(-x)$$
.

In the general case, we know $y = \forall y_n \ (n = 1, 2, \cdots)$ where $\lambda y_n \ll \infty$, and the elements y_n can be assumed disjoint. Then $\lambda(y_n \wedge (z_1 - \sigma x)) = (\lambda y_n)\chi(-x)$, and summation gives (2).

This shows that if $x \in H$ then $-x \in H$, with $\sigma(-x) = z_1 - \sigma x$.

Next let $x_n \in H$ $(n = 1, 2, \dots)$, $y \in E$, and suppose $\lambda(y) \ll \infty$. Then $\lambda(y \wedge \Lambda \sigma x_n) \leq \lambda(y \wedge \sigma x_n) = (\lambda y) \chi x_n$ for all n, and therefore

(3)
$$\lambda(y \wedge \wedge \sigma x_n) \leq (\lambda y) \chi(\wedge x_n).$$

⁽⁸⁾ This depends on the observation that if $g \in \mathfrak{F}(\mathfrak{S}_k)$ is \mathfrak{N} -negligible, then g is \mathfrak{N}_k -negligible. For $g = h \mod \mathfrak{N}_k$ where h is k-continuous; being continuous and $\mathfrak{K}R$ -negligible, h must be 0.

But $\lambda \{y \wedge (z_1 - \Lambda \sigma x_n)\} = \lambda \{y \wedge V(z_1 - \sigma x_n)\} \leq \sum \lambda \{y \wedge (z_1 - \sigma x_n)\}$ = $\sum (\lambda y)\chi(-x_n)$ by $(2) = \lambda y \sum \chi(-x_n)$, and thus $\lambda \{y \wedge (z_1 - \Lambda \sigma x_n)\}$ $\leq \inf \{\lambda y, \lambda y \sum \chi(-x_n)\}$; that is,

$$(4) \qquad \lambda(y \wedge (z_1 - \wedge \sigma x_n)) \leq (\lambda y) \chi \vee (-x_n).$$

But $\lambda \{y \land \Lambda \sigma x_n\} + \lambda \{y \land (z_1 - \Lambda \sigma x_n)\} = \lambda (y \land z_1) = \lambda y \ll \infty$. Adding (3) and (4), we see that both inequalities must be equalities; in particular (3) becomes

(5)
$$\lambda(y \wedge \Lambda \sigma x_n) = (\lambda y) \chi(\Lambda x_n), \quad \text{if } \lambda y \ll \infty$$

The restriction $\lambda y \ll \infty$ is easily removed, as before, so (5) shows that $\Lambda x_n \in H$, with $\sigma(\Lambda x_n) = \Lambda \sigma x_n$.

Thus H is a σ -subalgebra of E. Further,

(6)
$$H$$
 contains each E_k $(k = 0, 1, 2, \cdots)$.

For (4.2(3)) $c_{k+1,k}\phi_{k+1}$ is a fully homogeneous F_k -integral on F_{k+1} ; we apply [4, p. 175, Lemma 4] to its strict form, taking $\sigma x = \pi(z_1, x)$ for $x \in E_{k+1}$, and obtain $c_{k+1,k}\phi_{k+1}\chi_{k+1}(y\wedge\sigma x) = (c_{k+1,k}\phi_{k+1}\chi_{k+1}y)\chi_{k+1}x$, χ_{k+1} denoting the characteristic function in F_{k+1} . We use the same realisations of F_k , F_{k+1} as at the end of 5.3; the cylinder mappings become identities, $\chi_{k+1}y = \chi y$ for $y \in E_{k+1}$, and because ϕ is a cylinder extension of ϕ_{k+1} it follows that $\phi \chi(y \wedge \sigma x) = (\phi \chi y)\chi x$ for $x \in E_{k+1}$; thus $E_k \subset E_{k+1} \subset H$.

Now let $\mathfrak{R} =$ family of all sets $X \in \mathfrak{B}'$ such that $(X) + \mathfrak{R} \in H$. Then \mathfrak{R} is a Borel field containing $\bigcup \mathcal{E}_k = \mathcal{E}'$, so $\mathfrak{R} \supset \mathfrak{B}'$. That is, $(X) + \mathfrak{R} \in H$ for all $X \in \mathfrak{B}'$, proving $E \subset H$. This establishes (1).

Now, given $x \in E$ and $g \in F^+$ such that $g \leq \lambda x$, we must find $y \leq x$ in E such that $\lambda y = g$. We may of course assume g > 0; and it is enough to show that there then exists a nonzero $z \le x$ in E such that $\lambda z \le g$, as then an "exhaustion" argument, based on the countable chain condition (cf. [2, p. 283]), produces the required element y. We may further suppose that $x \leq a_1$ where $a_1 \in E_1$ and $\lambda a_1 \le 1$. For $c_{10}\phi_1 = \phi_1$ is fully homogeneous on F_1 and ϕ extends ϕ_1 ; hence (as in the proof of 4.6(7)) disjoint elements $a_1, a_2, \cdots \in E_1$ exist such that $\forall a_n = e$ and $\lambda a_n \le 1$. Since $\sum \lambda(x \wedge a_n) \ge g > 0$, there exists n such that $[\lambda(x \wedge a_n)] \wedge [g] \neq o$; we may suppose n=1, and then have $g_1 = \lambda(x \wedge a_1) \wedge g$ >0; we replace x by $x \land a_1$ and g by a_1 . For some positive integer m we have $g \ge (1/m)\chi w$ for some nonzero $w \in E$. Because of the full homogeneity of ϕ_1 , there exist disjoint elements $b_1, b_2, \cdots, b_m \in E_1$ such that $\forall b_i = a_1$ and λb_i $= (1/m)\lambda a_1^{\bullet}. \text{ Since } x \leq \forall b_i, \quad \sum \lambda (b_i \wedge x \wedge \sigma w) = \sum \lambda (b_i \wedge x) \chi w = (\lambda x) \chi w \geq g \chi w$ $\geq (1/m)\chi w > 0$. Hence, for some i, $0 < \lambda(b_i \wedge x \wedge \sigma w) \leq \lambda(b_i \wedge \sigma w) = (\lambda b_i)\chi w$ $\leq (1/m)\chi w \leq g$, and we take $z = b_i \wedge x \wedge \sigma w$. This completes the proof of Theorem 1.

6. Extensions of measures on measure algebras.

THEOREM 2. Let A be a $(\sigma$ -)subalgebra of a measure algebra (E, μ) . (9) Let λ

^(*) By saying that (E, μ) is a measure algebra, we imply that μ is σ -finite and positive on E.

be a σ -finite positive measure on A. Then there exists a σ -finite positive measure λ^* on E which extends λ .

In what follows, it is understood that all measures are to be complete and σ -finite, and that the sets and functions used are measurable.

By [3, Theorem 2b, p. 149], (E, μ) has a realisation of the following form. We can realise A algebraically as the measure algebra of a measure space (S, ν) (the measure ν has no simple relation to μ), and can find a measure space (T, m) and a subset K of the product space $S \times T$ (to which we give the usual product measure), in such a way that there is a measure-preserving isomorphism θ of (E, μ) onto a certain Borel field of subsets of K modulo null sets, and further if $a \in A$ then θa is the class of the "cylinder set" $(U \times T) \cap K$, where U is any subset of S in the class a.

By the Radon-Nikodym theorem, there exists a non-negative function f on S such that, for each $U \subset S$, $\lambda(U) = \int_U f(s) d\nu(s)$. (Here $\lambda(U)$ means λa where a is the class of U modulo null sets.) Write $T = UT_n$ $(n = 1, 2, \dots)$, where the sets T_n are disjoint and $m(T_n)$ is positive and finite. Define

$$P(s) = \int_{T} \chi_{K}(s,t) \sum \{(\chi T_{n})/2^{n} m(T_{n})\} dm(t);$$

this is defined and ≤ 1 for almost all $s \in S$. Further, P(s) > 0 almost everywhere, since if P(s) = 0 for all $s \in U$, the set $(U \times T) \cap K$ is null, showing that U is in the class of $o \in A$ —that is, $\nu(U) = 0$. Now define, for $X \subset S \times T$,

$$\lambda^*(X) = \int\!\!\int_{S \times T} (f(s)/P(s))(\chi X) \sum (\chi T_n/2^n m(T_n)) d\nu(s) dm(t).$$

Then, applying θ , we see that λ^* gives a σ -finite positive measure on E. To show that λ^* extends λ on A, we verify (by a straightforward calculation) that if $U \subset S$, $\lambda^*((U \times T) \cap K) = \lambda U$.

7. Extensions of operators for measure algebras. In this section we prove that if we start with a measure algebra in Theorem 1, then we can arrange to end up with a measure algebra. More precisely:

THEOREM 3. If, in Theorem 1, E_0 is a measure algebra (9) with measure m_0 , the algebra E can be chosen so that it is also a measure algebra, with measure m extending m_0 .

Proof. Since m_0 is σ -finite on E_0 , we can find an equivalent *finite* measure m_0' on E_0 ; say $m_0'(e) = 1$. We use the entire argument of §4 (but not of §5), with the following additions. We first observe that E_1 can be taken to be a measure algebra, say with measure m_1 . For let $z_0 = V\{x \mid x \in E_0, \ \phi_0 \chi x = 0\}$, $z_1 = e - z_0$. The "strict form" ϕ_{0s} of ϕ_0 is defined on the function space on the principal ideal $E_0(z_1) = \{x \mid x \in E_0, \ x \le z_1\}$, and its range is the function space on the principal ideal $E_0(\phi_1)$. The construction of E_1 depended in the first

instance on applying the result of [4] to ϕ_{0a} ; this gives an algebra E_1' containing $E_0(z_1)$ as a subalgebra, and a fully homogeneous strict extension ϕ_0^* of ϕ_{0a} to an operator from $F(E_1')$ to $F(E_0[\phi 1])$. We then take E_1 =direct sum of E_1' and $E_0(z_0)$, imbedding E_0 in E_1 in the obvious way; ϕ_1 is defined by $\phi_1 f = c_{01}\phi_{0a}(f\chi z_1)$. By [4, Theorem 5], E_1' is isomorphic to a principal ideal in a product $J \times E_0[\phi 1]$, where J is a numerical measure algebra. By [3; 2; 4], if we give $E_0[\phi 1]$ the measure m_0' , then $J \times E_0[\phi 1]$ with the usual product measure induces a (positive, σ -finite) measure (say) m_1 on E_1' . We extend m_1 to E_1 by using m_0' on $E_0(z_0)$. By Theorem 2, there is a (positive) measure m_1' on E_1 which extends m_0' . Note that $m_1' \leq 1$ on E_1 , because $m_1'(e) = m_0'(e) = 1$.

In this way, we may suppose that all the algebras E_k of 4.2 are measure algebras, the measure m'_{k+1} on E_{k+1} extending m'_k on E_k . Their common value gives a *finitely* additive measure m' on E', and hence on the family \mathcal{E}' of sets Rx, $x \in E'$, in the representation space R of E' (cf. 4.3). By the same reasoning as in 4.6, we extend m' to a complete, countably additive measure (still denoted by m') on a Borel field containing \mathfrak{E}' ; note that m'(R) = 1. Let \mathfrak{N}^0 denote the family of subsets of R with zero m'-measure. We show:

(1)
$$\mathfrak{N}^0 \supset \mathfrak{N}_k, \qquad (k = 0, 1, 2, \cdots).$$

For, by 2.3(4), each $X \in \mathfrak{N}_k$ is contained in a set of the form $\xi^{-1}Y$, where $Y \in \mathfrak{K}S \cap \mathfrak{G}S$. By 3.2, $Y \subset \mathsf{U}_m \cap_n Sx_{mn}$ where $x_{mn} \in E_k$, $x_{m1} \geq x_{m2} \geq \cdots$ and $\bigwedge_n x_{mn} = o$. Thus $X \subset \xi^{-1}Y \subset \mathsf{U}_m \cap_n Rx_{mn}$ by 2.2(1); now, as m'_k is finite, $m'_k x_{mn} \to 0$ as $n \to \infty$, so $m' \cap_n Rx_{mn} = 0$ for each m, proving m'X = 0 if $X \in \mathfrak{N}_k$. It follows at once that

$$\mathfrak{N}^{0}\supset\mathfrak{N}'.$$

Define $\mathfrak{N} = \{X \mid X \subset Y \text{ for some } Y \in \mathfrak{M}' \text{ such that } I(Y) \in \mathfrak{N}^0\}$. It is easily verified that all the properties in 5.1 continue to apply for this modified definition of \mathfrak{N} , except that in 5.1(2) we no longer have $\mathfrak{N} \subset \mathfrak{K}R$. But instead we have

$$\mathfrak{N} \subset \mathfrak{N}^{0},$$

because if $X \in \mathfrak{N}$ then $X \subset Y \subset I(Y)$ where $I(Y) \in \mathfrak{N}^0$. Hence 5.1(3) continues to hold.

For each $f \in \mathfrak{F}(\mathfrak{M}')^+$, put

$$\psi f = \sum_{n=1}^{\infty} 2^{-n} \Phi^*(f \chi G_n),$$

the sets G_1, G_2, \dots , being those of 4.6. Then $\psi 1 \leq 1, \psi f \in \mathfrak{F}(\mathfrak{M}')^+, \psi$ is linear and countably additive mod \mathfrak{N}' , and $[\psi f] = [\Phi^* f] \mod \mathfrak{N}'$. Hence $\psi f \in \mathbb{Z}(\mathfrak{N}')$ if $f \in \mathbb{Z}(\mathfrak{N}')$, and from this an easy induction shows that $[\psi^k f] = [\Phi^{*k} f] \mod \mathfrak{N}'$ (where $f \in \mathfrak{F}(\mathfrak{M}')^+$ and $k = 0, 1, 2, \dots$), and that ψ^k is countably additive mod \mathfrak{N}' . Further,

$$[\sum 2^{-k-1}\psi^k\chi X] = I(X) \mod \mathfrak{N}' \qquad (X \in \mathfrak{M}'),$$

because (modulo \mathfrak{N}')* $I(X) = [\sum \Phi^{*k}\chi X] = \bigcup [\Phi^{*k}\chi X] = \bigcup [\psi^{k}\chi X] = \bigcup [2^{-k-1}\psi^{k}\chi X] = [\sum 2^{-k-1}\psi^{k}\chi X].$

Now define, for $X \in \mathfrak{M}'$,

$$m^*X = \int_R \sum 2^{-k-1} \psi^k \chi X dm'.$$

The integrand is \mathfrak{M}' -measurable, non-negative, and ≤ 1 , so m^* is well defined and is a finite, countably additive measure on \mathfrak{M}' . We complete this measure as usual, still calling it m^* , and show

(4)
$$m^*Y = 0$$
 if and only if $Y \in \mathfrak{N}$.

For if $m^*Y=0$, we have $Y\subset X$ where $X\in \mathfrak{M}'$ and $m^*X=0$. In the definition of m^*X , the integrand must be zero almost everywhere (m'), which from (3) and (2) gives $I(X)\in \mathfrak{N}^0$ and therefore $Y\in \mathfrak{N}$. Conversely, if $Y\in \mathfrak{N}$, $Y\subset X\in \mathfrak{M}'$ where $I(X)\in \mathfrak{N}^0$, and so $m^*X=0$.

The algebra E is now defined exactly as in 5.2, except that we use the new meaning of \mathfrak{N} ; and the measure m^* on $\mathfrak{M}'+\mathfrak{N}$ induces a positive σ -finite measure m^* on E. The proof of 5.2(1) no longer applies (as there we used $\mathfrak{N} \subset \mathfrak{K} R$), but the result itself (the countable chain condition) is a trivial consequence of the existence of m^* . The operator ϕ is defined just as in 5.3; the arguments in 5.3 and 5.4 apply unchanged, so that ϕ is a fully homogeneous cylinder extension of ϕ_0 . Finally, by Theorem 2, we replace the measure m^* on E by a (positive, σ -finite) measure m which extends m_0 on E_0 , and the proof is complete.

REFERENCES

- 1. E. Hopf, Ergodentheorie, Berlin, Springer, 1937.
- 2. D. Maharam, The representation of abstract measure functions, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 279-330.
- 3. ——, Decompositions of measure algebras and spaces, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 142-160.
- 4. ——, The representation of abstract integrals, Trans. Amer. Math. Soc. vol. 75 (1953) pp. 154-184.
- 5. ——, On kernel representation of linear operators, Trans. Amer. Math. Soc. vol. 79 (1955) pp. 229-255.
- 6. M. H. Stone, Boundedness properties in function lattices, Canad. J. Math. vol. 1 (1949) pp. 176-186.

University of Manchester, Manchester, England